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Abstract: It is typically assumed that once a Hartree-Fock (HF) reference wave function is 
determined, the correlated wave function obtained from that HF wave function describes the 
same electronic state. In this paper, we report the appearance of multiple CCSD solutions 
obtained from the UHF reference wave function for the known ground state of a chemically 
interesting molecule, NiH. To determine a correspondence between the computed CCSD 
solutions and the physical electronic states, we consider several characteristics of the CCSD 
wave functions, e.g., potential energy curves, spin density isovalue plots, and excited state studies 
via EOM-CCSD calculations. Finally, the use of Brueckner orbitals is encouraged as a way to 
avoid some of the problems highlighted here for HF-based coupled cluster calculations in such 
challenging systems. 

1. Introduction 

Coupled-cluster theory1-3 has undoubtedly provided elec-
tronic structure theorists with the most useful hierarchy of 
methods for obtaining highly accurate descriptions of electron 
correlation for a large variety of molecular systems. However, 
the nonlinearities in the wave function expansion coefficients 
makes it highly challenging to enumerate the multiple 
solutions of the resulting equations and can sometimes lead 
to complex behavior. For CI (configuration-interaction), 
which is linear in the coefficients or amplitudes, the lowest 
energy wave function for a particular set of molecular orbitals 
(MOs) can be solved for readily, as it requires the diago-
nalization of a Hermitian matrix. This is not the case for the 
CC (coupled-cluster) equations, and multiple solutions may 
be obtained by starting with different sets of initial ampli-
tudes. The reasons responsible for the existence of multiple 
solutions in the CC case are different than those for the CI 
problem. The multiple solutions in CI are simply the different 
eigenvectors of the CI matrix. The multiple solutions to the 
CC equations arise from the nonlinear nature of the CC 
amplitude equations. 

This problem was perhaps first addressed in 1978 when 
Monkhorst and Zivkovic4 explored the mathematical con-
nections between CI and CC solutions. More recently, 

Bartlett and co-workers5 and then Jankowski and co-
workers6-8 studied particular examples of multiple CC 
solutions with the widely used H4 model9 system in which 
the geometry (comprised of four hydrogen atoms) is com-
pletely determined by a single chosen parameter. More 
recently, the existence of multiple CC solutions has been 
observed in the PPP10,11 model of conjugated rings.12-15 

From these studies, it was concluded that determining a 
connection between a physical electronic state and a par-
ticular CC solution is a difficult problem and that a given 
CC solution may not even correspond to a physical state. 

Multiple CC solutions also occur in a different context. 
In addition to obtaining solutions which differ only in the 
converged parameters of the multideterminantal wavefuntion, 
one may obtain multiple CC solutions by using a different 
underlying HF (Hartree-Fock) reference wave function. As 
the HF method also requires one to solve a set of nonlinear 
equations, the possibility of multiple solutions arises here 
as well. While the choice of reference does not matter when 
the full n-particle T operator is used (as this is equivelant to 
a full configuration interaction which is invariant to rotations 
of all the orbitals), any realistic calculation must approximate 
T by a small number of excitation operators, and thus 
dependence on the reference wave function arises. This has 
been investigated by Jankowski et al.16-18 again using the 
H4 model system. 
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While the H4 model system is well studied and understood, 
there exists a dearth of information regarding the appearance 
of multiple CC solutions in well-studied real molecular 
systems. As a molecule of both chemical and physical 
interest, NiH has been the focus of computational and 
experimental investigation for many years.19-35 In this paper, 
we report the calculation of multiple solutions to the CCSD 
amplitude equations for the known ground state of the NiH 
molecule. We provide an analysis of the resulting wave 
functions which suggests particular implications for coupled 
cluster-based applications. 

2. Potential Energy Surfaces 

Many of the computational difficulties experienced with NiH 
ultimately stem from problems in correctly describing the 
atomic state separations of Ni.36 Experimentally, the 3D(d9s1) 
and 3F(d8s2) states are nearly degenerate, with the d9s1 

slightly more stable by 0.03 eV.37 Using unrestricted HF 
theory (UHF) with the G3Large basis set,33 the absence of 
electron correlation among the d electrons causes the d8s2 

state to lie 1.41 eV lower in energy than the d9s1 state. The 
error in the calculated atomic state separation is reduced 
dramatically when correlation effects are included with 
CCSD(T) (0.13 eV).33 It should be noted that, in addition to 
correlation effects, relativistic effects are known to contribute 
significantly to this energy difference (by ∼0.3 eV).38 

However, as our focus in this paper is on addressing issues 
related to solving the CC equations, we illustrate our ideas 
using simple nonrelativistic calculations. 

Since the ground electronic state of NiH is known to be 
2∆, we restrict our study to the low energy states with ∆ 
symmetry. The MO diagrams for the three lowest energy 
states with ∆ symmetry are given in Scheme 1. On the basis 
of previous studies on this molecule, these electronic states 
can be described as follows: 

1. Ground State 2∆. The nickel hydride molecule has a 
2∆ ground electronic state in which both the d9s1 and 
d8s2 atomic states of Ni contribute to the bonding, with 
the d9s1 atomic state as the predominant component.25 

In a covalent bonding model, the Ni-H bond in this 
electronic state can be thought of principally as a Ni s 
orbital overlapping with a H s  orbital (4s+s). Alter-
natively, in an ionic model, the Ni-H bond can be 

thought of as a bond between a Ni+ (d9s0) and a H-

(s2). We will refer to this state as the 2∆(d9s1) state. 
2. Excited State 2∆. An excited 2∆ state exists which can 

be thought of as the d8s2 atomic Ni state interacting 
with a hydrogen atom and forming a bond between H 
s and Ni dz2(dz2+s).31 However, recent large scale 
multireference calculations by Zou and Liu32 suggest 
that this state has substantial multiradical character. It 
may be better considered as a bond between the Ni+ 

(d8s1) and H- (s2) ionic fragments resulting in a state 
with three unpaired electrons, although the overall spin 
is only 1/2. This state has been experimentally mea-
sured at 2.01 eV above the ground state.39 We will refer 
to this state as the 2∆(d8s2) state. 

3. Excited State 4∆. An excited 4∆ state can also result 
from a similar atomic configuration as the 2∆(d8s2) state 
above. The arrows shown in red become paired at bond 
lengths near the equilibrium geometry, and thus the 
overall multiplicity is 4. Using multireference methods, 
Zou and Liu calculated this state to lie 1.57 eV higher 
in energy than the ground state.32 This state will be 
denoted as 4∆(d8s2). 

2.1. UHF Solutions. Both the ground and excited 2∆ 
states can be calculated with the UHF method by starting 
with the appropriate orbital occupations. However, this is 
not without difficulty since the dz2 orbital as well as the 4s 
orbital belong to the σ representation of the C∞V point group 
for NiH. This leads to considerable mixing between them 
resulting in convergence difficulties, particularly near equi-
librium. In fact, all points on the 2∆(d9s1) potential energy 
surface (PES) could not be calculated with the UHF method 
due to convergence problems for bond lengths less than about 
1.56 Å. For this region of the PES, the SCF procedure either 
collapsed to the lower energy 2∆(d8s2) or simply failed to 
converge. However, at larger internuclear distances where 
the two orbitals are fairly distinct, appropriate occupation 
of the orbitals leads to the two different 2∆ states. No 
convergence problems arose, however, for the 4∆(d8s2) state. 
In this quartet, the σdz

2 and σ4s orbitals are both singly 
occupied. 

UHF potential energy surfaces of the 2∆(d9s1) (dashed 
line), 4∆(d8s2) (dotted line), and 2∆(d8s2) (solid line) states 
are given in Figure 1a. It is immediately obvious that the 
UHF method does not predict the correct ground state since 
both of the 2,4∆(d8s2) states lie over 1 eV lower in energy 
than the 2∆(d9s1) state. A stability analysis of the resulting 
UHF wave functions also reveals that only the lower energy 
2,4∆(d8 s 2) solutions are stable. The experimentally obserVed 
ground state is unstable using the UHF method due to the 
lack of electron correlation, which would preferentially 
stabilize configurations with a larger number of d electrons 
(an NBO analysis at R ) 1.75 Å yields d populations of 8.0 
and 8.9 electrons for the 2∆(d8s2) and 2∆(d9s1) states, 
respectively). 

The calculated spin properties of the two UHF solutions 
are also dramatically different. For example, at a bond 
distance of 1.75 Å, the 2∆(d9s1) “ground” state has an S2 

value of 0.76 (close to the expected value of 0.75) but lies 
much higher in energy. The 2∆(d8s2) “excited” state has an 

Scheme 1. Molecular Orbital Diagram for the Lowest 
Energy States with ∆ Symmetrya 

a The red arrows represent electrons which participate in bonding, 
e.g., occupy a bonding orbital (covalent) or transfer to the H atom 
(ionic). 
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S2 value of 1.76 and lies lower in energy by 1.2 eV. As 
depicted in Scheme 1, this state has the following electron 
configuration δ3d

R σ3d
R σ4s 

 . The corresponding 〈S2〉 values are 
shown as areas and plotted as a function of Ni-H bond 
length. The pink 〈S2〉 area shown in Figure 1a illustrates the 
extreme amount of spin contamination which is found to exist 
at all bond lengths for the stable 2∆(d8s2) state, an observa-
tion which has been known for some time.19 The source of 
spin contamination is also clear from the similarity in the 
potential energy curves for the 2,4∆(d8s2) states. The result 
of this spin contamination is that the calculated bond length 
for the lowest energy 2∆ state at the UHF level (1.63 Å) is 
substantially larger than the ground state experimental value 
of 1.47 Å.39 As expected, very little spin contamination is 
observed for the 4∆(d8s2) UHF solution. Overall, the poor 
performance of UHF is striking. 

2.2. Multiple CCSD Solutions. The different UHF solu-
tions were then used to obtain potential energy surfaces (PES) 
at the CCSD level, leading to unanticipated results. Our most 
exciting result is that for a single UHF reference waVe 
function, we found two different conVerged CCSD solutions. 
Starting from the stable UHF solution for the 2∆(d8s2) state, 
we have been able to converge to two CCSD wave functions 
and energies. To the best of our knowledge, this is the first 
example of the existence of multiple solutions to the CCSD 
equations for a chemically interesting molecule with available 
experimental data. In Figure 1b, the two unique CCSD PESs 
using the same 2∆(d8s2) UHF reference state are given as 
solid curves, while the CCSD solution found for the unstable 
2∆(d9s1) UHF reference state is given as a dashed line (note 
that since the UHF 2∆(d9s1) state could not be found for 
small bond lengths, the CCSD curve also cannot be found). 
The quartet surface is represented with a dotted line. For all 
three PESs, we also plot, as areas, the T1 diagnostic (||T1||) 
of Lee and co-workers40 as a function of the Ni-H bond 

length. The pink, purple, green, and gray areas represent the 
||T1|| values for the CCSD1, CCSD2, CCSD-2∆(d9s1), and 
CCSD-4∆(d8s2) wave functions, respectively. 

As pointed out by previous authors studying the H4 model 
system,6 while finding one solution is typically easy, the 
others are often more difficult. The easily obtained solution 
is referred to as the “standard” solution, whereas the more 
difficult solutions are referred to as “alternate” solutions. Of 
the two CCSD solutions sharing the same UHF reference 
orbitals, CCSD1 was found readily using the standard 
convergence algorithms (using coefficients from first-order 
perturbation theory (from an MP2 calculation) as the initial 
set of amplitudes). Therefore, CCSD1 is considered our 
“standard” solution. To obtain CCSD2, we first ran a CCD 
calculation to obtain a set of amplitudes that were expected 
to be closer to the converged CCSD amplitudes than the 
perturbation theory coefficients, though the orbital relaxation 
effects from the T1 amplitudes are still neglected. Using the 
converged CCD amplitudes as our initial guess for the CCSD 
amplitudes, we were able to converge to a second CCSD 
solution (CCSD2) at a stretched bond length. These con-
verged amplitudes where then used as the initial amplitude 
guess for the next point on the potential energy surface. This 
was repeated to compute the full CCSD2 PES. Both the 
“standard” solution and the “alternate” solution are shown 
in Figure 1b with solid black lines. 

3. CCSD SolutionsElectronic State 
Correspondence 

Upon finding multiple CCSD solutions, one must address 
the following questions: 

• Do the CC solutions correspond to actual physical states? 
• Which solution corresponds to the same electronic state 

as the reference wave function? 

Figure 1. Potential energy surfaces. (a) UHF solutions for the “ground” 2∆(d9s1) state (dashed line) and “excited” states 2∆(d8s2) 
(solid line) and 4∆(d8s2) (dotted line). PESs are shown as curves and plotted against the left axis. 〈S2〉 values are shown for 
doublet states as areas plotted against the right axis. Pink: 〈S2〉 for the 2∆(d8s2) state. Green: 〈S2〉 for the 2∆(d9s1) state. (b) 
Both unique CCSD1 and CCSD2 solutions for the 2∆(d8s2) UHF reference state (solid line). The single CCSD solution for the 
2∆(d9s1) UHF reference state (dashed line). The single CCSD solution for the 4∆(d8s2) UHF reference state (dotted line). ||T1|| 
values are shown as areas plotted against the right axis. Pink: ||T1|| for the CCSD1 solution. Purple: ||T1|| for the CCSD2 solution. 
Green: ||T1|| for the CCSD-2∆(d9s1) solution. Gray: ||T1|| for the CCSD-4∆(d8s2) solution. 
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• To which electronic states do the remaining solutions 
correspond? 

In the absence of a mathematically rigorous way to obtain 
a physical state correspondence for the different CCSD 
solutions, we have investigated many aspects related to the 
CCSD wave functions to make our determinations. As the 
multiple CCSD solutions arise from a doublet UHF solution, 
we only concern ourselves with the doublet solutions for 
electronic state determination. 

Considering that the PESs for both CCSD solutions appear 
reasonable on initial inspection (i.e., separation into atomic 
states, appropriate equilibrium bond lengths, and binding 
energies), it seems as though both solutions correspond to 
physical states. Simple analysis of the PESs shows that the 
“standard” solution (CCSD1) actually corresponds to a 
different electronic state (2∆(d9s1)) than is described by the 
reference wave function (2∆(d8s2)), and the “alternate” 
solution (CCSD2) corresponds to the same 2∆(d8s2) state as 
the reference UHF wave function. Some of the characteristics 
of the different PESs are summarized in Table 1. As shown 
in this table, the UHF wave function values for Req and De 

are similar to CCSD2, whereas the parameters for CCSD1 

are very different. 
3.1. Spin Densities. Determining the electronic state for 

a single determinant wave function is normally rather 
straightforward via direct inspection of the molecular orbitals. 
However, this type of analysis is more complicated with a 
correlated, multideterminental wave function. In Figure 2, 
we report isodensity plots of the spin densities (FR - F) 
using both the reference wave function density and the 
associated CCSD response density(ies). Blue surfaces indi-
cate excess R density, and black surfaces indicate regions 
of excess  density. Therefore, a pure doublet spin state 
would have no visible black surface shown. 

In Figure 2a and b, respectively, the UHF2 and associated 
CCSD spin densities are shown. As shown in Figure 1a, the 
UHF2 wave function is already rather close to a pure doublet 
(〈S2〉 ) 0.763), so little is required of the T1 amplitudes in 
terms of cleaning up the spin contamination, and thus the 
resulting CCSD spin density looks rather similar to the UHF 
spin density and the T1 diagnostic is small (||T1|| ) 0.05). 
Both the UHF2 and resulting CCSD results clearly resemble 
2∆ states, with a single unpaired electron occupying a dδ-
type orbital. 

In Figure 2c,d,e, spin densities are given for the UHF1 

reference wave function (d8s2) and associated CCSD2 and 
CCSD1 solutions. In addition to the similarities in the 
spectroscopic parameters shown in Table 1, inspection of 
the spin densities provides further evidence that the “alter-
nate” solution (CCSD2) more closely resembles the reference 

wavefuntion. The extreme amount of spin polarization 
resulting in the high degree of spin contamination can be 
immediately seen in the spin densities for UHF1 and CCSD2. 
It is most interesting that the “standard” solution (CCSD1) 
starting from UHF1 describes a different electronic state 
(d9s1) that more closely resembles UHF2. These results are 
quite surprising as it means that the CCSD solution which 
was most easily obtained actually corresponds to a different 
electronic state than the original starting point. This 
reinforces the need to employ caution when studying highly 
correlated chemical systems, even with well-calibrated “black 
box” methods such as CCSD. 

3.2. EOM-CCSD. To determine the electronic state 
correspondence for the “standard” solution (CCSD1), we note 
the resemblance between the PES for CCSD1 and the PES 
for the CCSD calculation starting from the UHF2 reference 
(comparing regions of the PES for which both solutions could 
be obtained). This suggests that the CCSD1 solution corre-
sponds to the experimental ground state (and UHF2 excited 
state) 2∆(d9s1). This implies that the cluster operators within 
the spin-orbital formulation act upon the spin-symmetry-
broken UHF1 solution to produce a correlated wave function 
where the spin symmetry is mostly restored. However, the 
similarities in the energy alone are not sufficient to make 
our determination, as there are multiple low lying electronic 
states for NiH. To make a more definitive connection, we 
have calculated EOM-CCSD excited states using both the 
“standard” and “alternate” solutions, the results of which are 
listed in Table 2. 

Table 2 shows the similarities in excitation energy between 
the lowest energy 2∆ excited states from both of the EOM-
CCSD calculations. If we compute the excited states for the 
“standard” solution (CCSD1), we find an excited 2∆ state 

Table 1. Calculated Spectroscopic Parameters for the 2∆ 
State 

solution reference dissociation Req (Å) De (eV) 

UHF1 d8s2 + s1 1.630 1.12 
CCSD2 

2∆(d8s2) d8s2 + s1 1.611 1.21 
CCSD1 

2∆(d8s2) d9s1 + s1 1.477 2.71 
UHF2 d9s1 + s1 

CCSD 2∆(d9s1) d9s1 + s1 

Figure 2. Spin density plots (FR - F, isovalue ) 0.002) 
shown at a Ni-H bond length R ) 1.75 Å. Excess R density 
(blue). Excess  density (black). Left column, a and c, shows 
the spin densities of the different reference wave function spin 
densities. Right column shows the different correlated wave 
function spin densities. (b) CCSD solution using the UHF2 

reference. (d and e) The two different CCSD solutions for the 
same reference (UHF1). 
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1.34 eV higher in energy. Likewise, if we calculate the 
excited states for the “alternate” solution (CCSD2), we find 
that a 2∆ state lies 1.33 eV lower in energy. If we look at 
the results more closely, we see that for both excited states 
the largest coefficients are in front of determinants which 
involve switching the same UHF1 orbitals (i.e., 14σf22σ 

and 14σf24σ). These orbitals are shown in Figure 3. 
As illustrated in Scheme 1, the 2∆(d9s1) and 2∆(d8s2) UHF 

solutions differ primarily in the  occupancy of the σ3dz
2 and 

σ4s orbitals. These are precisely the orbitals upon which a 
change in occupation connects the two excited 2∆ states in 
Table 2. It can be seen from Figure 3 that the molecular 
obital 14σ is primarily of 4s character, and the 22σ and 
24σ each have significant 3dz2 character. We therefore 
conclude the following: 

• Both the “standard” (CCSD1) and “alternate” (CCSD2) 
solutions correspond to physical states. 

• The “standard” solution is assigned to the 2∆(d9s1) state, 
and the “alternate” solution is assigned to the 2∆(d8s2) state. 

• The “alternate” solution describes the same electronic 
state as the reference UHF wave function. 

4. Corrections to Correlated Wave Functions 

As we have just noted, if one treats this system in a “black 
box” fashion and first obtains a stable 2∆UHF solution, then 
employs standard convergence procedures to obtain a CCSD 
energy, the solution will have extremely large T1 amplitudes 
related to the orbital rotations required to describe the 
2∆(d9s1) state from a 2∆(d8s2) reference wave function. If 
one is only concerned with the CCSD energies, then this 
provides at least a qualitatively acceptable PES. However, 
often it is recognized that triple excitations are necessary to 
describe the system to a satisfactory degree of quantitative 
accuracy. This is commonly done via a perturbational 
correction to the correlated wave function using the well-
known CCSD(T) method.41,42 We now explore some of the 
implications related to using CCSD(T) to describe an 

electronic state whose character is substantially different from 
the orbital occupations that define the reference wave 
function. 

In Figure 4a, we show the lowest energy 2∆ and 4∆ 
potential energy curves for both CCSD and CCSD(T). While 
the CCSD curves are qualitatively correct, inclusion of triple 
excitations by means of a perturbational correction results 
in unphysical potential energy curves. This unrealistic rising 
of energy with the bond length is a direct result of the 
incredibly large T1 amplitudes in the CCSD wave functions 
which are used to compute the triples correction. In Figure 
1b, the T1 diagnostic is given for the CCSD-2∆ curve (pink) 
and the CCSD-4∆ curve (gray). For both of these CCSD 
solutions, the ||T1|| becomes very large at long bond lengths. 
However, as a matrix norm, the ||T1|| metric does not fully 
indicate the nature of the individual T1 amplitudes. Table 3 
lists the largest amplitudes (greater than 0.2) for the CCSD1 

and CCSD2 solutions. While there are many significantly 
large T1 amplitudes, two particular components of the CCSD1 

wave function have coefficients greater than 1. The singly 
excited determinants |Ψ14σ22σ

〉 and |Ψ14σ24σ

〉 have coefficients 
of 1.05 and -1.01, respectively. These incredibly large T1 

Table 2. EOM-CCSD Calculations with Both the Standard 
and Alternate CCSD Solutionsa 

solution lowest 2δ state (ev) occfvirt coefficient 

EOM-CCSD2 -1.327 14σf22σ -0.561 
14σf24σ +0.530 

EOM-CCSD1 +1.343 14σf22σ +0.642 
14σf24σ -0.601 

a Both CCSD solutions use the UHF1 (2∆(d8s2)) reference. 
Ni-H bond length, R ) 1.75 Å. 

Figure 3. Molecular orbitals which have significant contribu-
tions to the EOM-CCSD excited states. 

Figure 4. Potential energy surfaces. (a) CCSD (solid line). 
CCSD(T) (dashed line). As this uses the 2∆(d8s2) UHF 
reference wave function, the CCSD curve is the same as the 
CCSD1 curve given in Figure 1. (b) BD (solid line), BD(T) 
(dashed line). 
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amplitudes, required to obtain the 2∆(d9s1) state from a 
2∆(d8s2) reference wave function, render any correction based 
on perturbation theory inappropriate. Note that these two 
excited determinants are obtained by swapping the exact 
same orbitals that are active in the EOM-CCSD calculations, 
as shown in Table 2. 

If, however, one opts to use a different MO basis, one in 
which all the T1 amplitudes are zero by design, better 
behavior might be expected. The BD method (Brueckner 
Doubles) is defined as a CCSD approach in which all of the 
T1 amplitudes have been driven to zero via orbital rotations.43 

In Figure 4b, the BD and BD(T) potential energy curves are 
given for both the lowest energy 2∆ and 4∆ potential energy 
curves. While the BD and CCSD methods yield very similar 
potential energy curves, the triples correction for BD behaves 
far better. Because the T1 amplitudes in a BD wave function 
are zero, the singles-doubles terms in the (T) correction are 
also zero, and thus there are no terms which may provide a 
destabilizing effect on the energy. 

Note that Figure 4a shows CCSD underestimating the 1.57 
eV 2∆-4∆ energy separation by 0.47 eV.32 Performance 
worsens significantly when the triples correction is added to 
CCSD (calculated energy separation of only 0.82 eV). As 
seen in Figure 4b, the performance of BD is very similar to 
that of CCSD (BD underestimates this state separation by 
0.48 eV). However, due to the reasons just outlined, the BD 
wave function does not suffer from the accumulation of large 
T1 amplitudes, and thus BD(T) performs quite well, yielding 
a 2∆-4∆ energy separation of 1.44 eV. This is in good 
agreement with the results from the multireference calcula-
tions.32 The calculated BD(T) bond lengths for the 2∆ and 
4∆ states (1.479 Å and 1.587 Å) are also in good agreement 
with the multireference results. 

The energy difference between the 2∆(d9s1) and 2∆(d8s2) 
states (experimentally measured to be 2.01 eV)39 is more 
difficult to compute. At the CCSD level, the calculated 
difference is too small, 1.5 eV, since the 2∆(d9s1) ground 
state is described poorly. However, since the 2∆(d8s2) and 
4∆(d8s2) states are somewhat similar, the calculated energy 
difference between them at the CCSD level (0.3 eV) is likely 
to be more reasonable. If this energy difference is added to 
the computed 2∆(d9s1) - 4∆(d8s2) energy difference (1.44 

eV at the BD(T) level), we determine the energy difference 
between the two lowest 2∆ states as 1.74 eV, in reasonable 
agreement with the experimental value of 2.01 eV. 

5. Conclusions 

In this article, we report the calculation of multiple solutions 
to the CCSD equations and subsequent analysis of the results, 
which suggest interesting implications for coupled cluster-
based applications. From this work we have drawn the 
following conclusions: 

1. The ability to find alternate solutions to the CCSD 
equations largely depends on the underlying wave 
function. For systems whose ground state orbital 
occupations change after the inclusion of electron 
correlation, one needs to be wary of the resulting wave 
function, as it may not correspond to the same 
electronic state. Analysis of the T1 diagnostic is useful 
in determining if the correlated wave function is 
describing a different electronic state. This has implica-
tions for deliberately using unstable UHF wave func-
tions as references in CCSD calculations for the 
purpose of modeling excited states. 

2. EOM-CCSD is useful as a test to determine if lower 
energy CCSD solutions exist. 

3. We have found that using the converged CCD ampli-
tudes as a set of initial guess amplitudes for a CCSD 
calculation improves the ability to converge to a 
solution which describes the same state as the reference. 

4. The use of a Brueckner orbital reference wave function 
reduces the possibility of converging to CCSD solutions 
which describe different electronic states than the 
reference. 

5. In addition to other beneficial aspects, obtaining a 
correlated wave function from a set of Brueckner 
orbitals yields a correlated wave function which is 
much more appropriate for use in perturbative treat-
ments for higher order corrections such as BD(T). 

6. NiH is an interesting molecule which exhibits many 
characteristics which are often very difficult to describe 
theoretically. Thus, its use as a test molecule is further 
encouraged. 
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